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The article develops the notion of covariational reasoning and proposes a framework
for describing the mental actions involved in applying covariational reasoning when
interpreting and representing dynamic function events. It also reports on an investi-
gation of high-performing 2nd-semester calculus students’ ability to reason about
covarying quantities in dynamic situations. The study revealed that these students were
able to construct images of a function’s dependent variable changing in tandem with
the imagined change of the independent variable, and in some situations, were able
to construct images of rate of change for contiguous intervals of a function’s domain.
However, students appeared to have difficulty forming images of continuously
changing rate and could not accurately represent or interpret inflection points or
increasing and decreasing rate for dynamic function situations. These findings suggest
that curriculum and instruction should place increased emphasis on moving students
from a coordinated image of two variables changing in tandem to a coordinated image
of the instantaneous rate of change with continuous changes in the independent vari-
able for dynamic function situations. 
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Since the late19th century, there have been repeated calls to increase the emphasis
on functions in school curricula (College Entrance Examination Board, 1959;
Hamley, 1934; Klein, 1883). More recently, the literature on early function instruc-
tion supports the promotion of conceptual thinking about functions that includes
investigations of patterns of change (Kaput, 1994; Monk, 1992; NCTM, 1989, 2000;
Sfard, 1992; Thorpe, 1989; Vinner & Dreyfus, 1989). Both in 1989 and in 2000,
the authors of the National Council of Teachers of Mathematics (NCTM) Standards
documents called for students to be able to analyze patterns of change in various
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contexts. They recommended that students learn to interpret statements such as “the
rate of inflation is decreasing,” and in general promoted the idea that students should
develop a “deeper understanding of the ways in which changes in quantities can
be represented mathematically” (NCTM, 2000, p. 305). In addition, the authors of
the National Science Education Standards (National Research Council, 1996)
have called for students to use mathematical functions to identify patterns and anom-
alies in data (p. 174). 

It is not clear to what extent mathematics curricula have responded to these calls
(Cooney & Wilson, 1993). Research suggests that undergraduate students are
entering the university with weak understandings of functions, and entry-level
university courses do little to address this deficiency (Carlson, 1998; Monk, 1992;
Monk & Nemirovsky, 1994; Thompson, 1994a). Recent investigations of college
students’ understandings of functions have documented that even academically
talented undergraduate students have difficulty modeling functional relationships
of situations involving the rate of change of one variable as it continuously varies
in a dependent relationship with another variable (Carlson, 1998; Monk &
Nemirovsky, 1994; Thompson, 1994a). Research has also shown that this ability
is essential for interpreting models of dynamic events (Kaput, 1994; Rasmussen,
2000) and is foundational for understanding major concepts of calculus (Cottrill,
Dubinsky, Nichols, Schwingendorf, Thomas, & Vidakovic, 1996; Kaput, 1994;
Thompson, 1994a; Zandieh, 2000) and differential equations (Rasmussen, 2000). 

In studying the process of acquiring an understanding of dynamic functional rela-
tionships, Thompson (1994b) has suggested that the concept of rate is foundational.
According to Thompson, a mature image of rate involves the following: the
construction of an image of change in some quantity, the coordination of images
of two quantities, and the formation of an image of the simultaneous covariation
of two quantities. These phases parallel Piaget’s three-stage theory about children’s
mental operations involved in functional thinking about variation (Piaget, Grize,
Szeminska, & Bang, 1977). Also contributing to our understanding of the notion
of covariation is the work of Saldanha and Thompson (1998), who describe under-
standing covariation as “holding in mind a sustained image of two quantities’ values
(magnitudes) simultaneously” (p. 298). This mental activity involves the coordi-
nation of the two quantities, then tracking either quantity’s value with the realiza-
tion that the other quantity also has a value at every moment in time. In this theory,
images of covariation are viewed as developmental, with the development evolving
from the coordination of two quantities to images of the continuous coordination
of both quantities for some duration of time. According to Saldanha and Thompson
(1998), “In early development, one coordinates two quantities’ values—think of
one, then the other, then the first, then the second, and so on. Later images of covari-
ation entail understanding time as a continuous quantity, so that, in one’s image,
the two quantities values persist” (p. 298).

Confrey and Smith (1995) see a covariation approach to creating and concep-
tualizing functions as involving the formation of links between values in a func-
tion’s domain and range. In the case of tables, it involves the coordination of the
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variation in two or more columns as one moves up and down the table (Confrey
& Smith, 1994). For both Confrey and Smith (1995) and Thompson (1994a),
coordinating is described as foundational for reasoning about dynamic function
relationships. Even though the covariation of two quantities does not always
require the notion of time, it is through the metaphor of “exact time” for the imag-
ined location of a “moving point” that Confrey and Smith and many others discuss
covarying quantities (e.g., Monk’s [1992] “across-time” function view and
Nemirovsky’s [1996] variational versus pointwise approach). 

In this article, we propose a framework for the study of covariational reasoning
and illustrate how this framework can be used to analyze students’ understanding
about dynamic situations involving two simultaneously changing quantities. We
also present problems that evoke and require the use of covariational reasoning,
and in doing so, we illustrate features of curricula that emphasize a covariational
approach to learning functions. We describe our research findings about high-
performing 2nd-semester calculus students’ covariational reasoning abilities and
discuss implications of these results. 

DEFINITIONS

On the basis of these studies and our research from the last several years (Carlson,
1998; Carlson, Jacobs, & Larsen, 2001; Carlson & Larsen, in press), we define
covariational reasoning to be the cognitive activities involved in coordinating two
varying quantities while attending to the ways in which they change in relation to
each other. We concur with Saldanha and Thompson’s (1998) view that images of
covariation are developmental, and we use the term developmental in the Piagetian
sense (Piaget, 1970) to mean that the images of covariation can be defined by level
and that the levels emerge in an ordered succession. Throughout this paper, our use
of the word image is consistent with the description provided by Thompson
(1994b). The construct of image is portrayed as “dynamic, originating in bodily
actions and movements of attention, and as the source and carrier of mental oper-
ations” (p. 231). The notion of image is not inconsistent with that of concept
image as defined by Vinner and Dreyfus (1989; i.e., the mental pictures, visual
representations, experiences, properties, and impressions associated with a concept
name by an individual in a given context); however, its focus is on the dynamics
of mental operations (Thompson, 1994b). We use the word rate to mean the
average rate of change in the case of imagining a subinterval, or the instantaneous
rate of change in the case of imagining a function over its entire domain. 

The terms pseudo-analytical thought processes and pseudo-analytical behaviors
identify, respectively, processes of thought and behaviors that take place without
understanding, and pseudo-analytic behaviors are produced by pseudo-analytical
thought processes (Vinner, 1997). According to Vinner (1997), “Pseudo-analytic
behaviors describe a behavior which might look like conceptual behavior, but which
in fact is produced by mental processes which do not characterize conceptual
behavior” (p. 100); these behaviors and thought processes are not necessarily
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negative and may be the result of “spontaneous, natural, but uncontrolled associ-
ations” (p. 125). Pseudo-analytical behaviors differ from pseudo-conceptual behav-
iors in that the focus of the former is on the analytic process rather than the
concept; however, these two ideas should not be seen as mutually exclusive as there
are some contexts in which both the analytical and conceptual modes are involved. 

BACKGROUND

In recent years, our understanding of ways in which college students interpret
and represent dynamic function situations has been informed by considerable
research (Carlson, 1998; Kaput, 1994; Monk, 1992; Nemirovsky, 1996; Sierpinska,
1992; Thompson, 1994b). In examining the thinking of calculus students who are
attempting to interpret the changing nature of rate of change for intervals of a func-
tion’s domain, several studies (Carlson, 1998; Monk, 1992; Monk & Nemirovsky,
1994; Nemirovsky, 1996; Thompson, 1994a) have revealed that this ability is slow
to develop, with specific problems reported in students’ ability to interpret graph-
ical function information. Studies by Monk (1992) and Kaput (1992) have noted
that calculus students show a strong tendency to become distracted by the changing
shape of a graph and in general do not appear to view a graph of a function as a
means of defining a covarying relationship between two variables. Other studies
have found that calculus students have difficulty interpreting and representing
concavity and inflection points on a graph (Carlson, 1998; Monk, 1992). Even when
directly probed to describe their meaning in the context of a dynamic real-world
situation, students made statements such as “second derivative positive, concave
up,” and “second derivative equal to zero, inflection point” (Carlson, 1998).
Further probing revealed that these students appeared to have no understanding of
why this procedure worked and in general did not appear to engage in behaviors
that suggested that they were coordinating images of two variables changing
concurrently. Tall (1992) also found that, although college students’ concept
images of function included a correspondence notion, the idea of operation, an equa-
tion, a formula, and a graph, it did not include the conception of two variables
changing in tandem with each other. 

Research into students’ developing conceptions of function has revealed that a
view of function as a process that accepts input and produces output (Breidenbach,
Dubinsky, Hawks, & Nichols, 1992) is essential for the development of a mature
image of function. This view has also been shown to be foundational for coordi-
nating images of two variables changing in tandem with each other (Carlson,
1998; Thompson, 1994a). According to Thompson (1994a), 

Once students are adept at imagining expressions being evaluated continually as they
“run rapidly” over a continuum, the groundwork has been laid for them to reflect on
a set of possible inputs in relation to the set of corresponding outputs. (p. 27) 

The covariation view of function has also been found to be essential for under-
standing concepts of calculus (Cottrill et al., 1996; Kaput, 1992; Thompson,
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1994b; Zandieh, 2000). Students’ difficulties in learning the limit concept have been
linked to impoverished covariational reasoning abilities. In a recent study, Cottrill
et al. (1996) recommended that the limit concept should begin with the informal
dynamic notion of the “values of a function approaching a limiting value as the
values in the domain approach some quantity” (p. 6). The development of this “coor-
dinated” process schema of limit was found to be nontrivial for students, and their
difficulty in grasping it has been sited as a major obstacle to their developing
conception of limit. 

In describing her framework for analyzing students’ understanding of derivative,
Zandieh (2000) also suggested that a view of function as the covariation of the input
values with the output values is essential. In her framework, she stated that “the
derivative function acts as a process of passing through (possibly) infinitely many
input values and for each determining an output value given by the limit of the
difference quotient at that point” (p. 107), emphasizing the notion that the deriv-
ative function results from covarying the input values of the derivative function
with the rate-of-change values of the original function. 

Thompson (1994b) suggested that covariational reasoning is foundational for
students’ understanding of the Fundamental Theorem of Calculus: “The
Fundamental Theorem of Calculus—the realization that the accumulation of a quan-
tity and the rate of change of its accumulation are tightly related is one of the intel-
lectual hallmarks in the development of the calculus” (p. 130). When interpreting
the information conveyed by a speed function, the total distance traveled relative
to the amount of time passed is imagined as the coordination of accruals of distance
and accruals of time.

Collectively, these studies suggest that covariational reasoning is foundational
for understanding major concepts of calculus and that conventional curricula
have not been effective in promoting this reasoning ability in students. Building
on these findings, our study investigated the complexity of constructing mental
processes involving the rate of change as it continuously changes in a functional
relationship. A framework for investigating covariational reasoning is described
in the next section. 

THEORETICAL FRAMEWORK

Covariational Reasoning

A description of the five mental actions of covariational reasoning and the asso-
ciated behaviors are provided in Table 1. The listed behaviors have previously been
identified in undergraduate students while they were responding to tasks that
involve interpreting and representing dynamic function situations (Carlson, 1998). 

The mental actions of the covariation framework provide a means of classifying
behaviors that are exhibited as students engage in covariation tasks; however, an
individual’s covariational reasoning ability relative to a particular task can be
determined only by examining the collection of behaviors and mental actions that
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were exhibited while responding to that task. A student is given a level classifica-
tion according to the overall image that appears to support the various mental actions
that he or she exhibited in the context of a problem or task. The Covariation
Framework contains five distinct developmental levels (Table 2). We say that one’s
covariational reasoning ability has reached a given level of development when it
supports the mental actions associated with that level and the actions associated
with all lower levels.

The notion of image used in describing the levels of the framework is consis-
tent with Thompson’s (1994a) characterization of an image as that which “focuses
on the dynamics of mental operations” (p. 231). As an individual’s image of
covariation develops, it supports more sophisticated covariational reasoning.
(Recall that we define covariational reasoning to be the cognitive activities
involved in coordinating two varying quantities while attending to the ways in which
they change in relation to each other). 

A student who is classified as exhibiting Level 5 (L5; i.e., Instantaneous Rate
Level) covariational reasoning, relative to a specific task, is able to reason using

Table 1
Mental Actions of the Covariation Framework

Mental action Description of mental action Behaviors

Mental Action 1 Coordinating the value of • Labeling the axes with verbal indica-
(MA1) one variable with changes tions of coordinating the two variables 

in the other (e.g., y changes with changes in x)

Mental Action 2 Coordinating the direction • Constructing an increasing straight 
(MA2) of change of one variable line

with changes in the other • Verbalizing an awareness of the di-
variable rection of change of the output while 

considering changes in the input 

Mental Action 3 Coordinating the amount • Plotting points/constructing secant 
(MA3) of change of one variable lines

with changes in the other • Verbalizing an awareness of the 
variable amount of change of the output 

while considering changes in the 
input

Mental Action 4 Coordinating the average • Constructing contiguous secant lines 
(MA4) rate-of-change of the func- for the domain

tion with uniform incre- • Verbalizing an awareness of the rate 
ments of change in the of change of the output (with respect 
input variable. to the input) while considering uni-

form increments of the input 

Mental Action 5 Coordinating the instanta- • Constructing a smooth curve with 
(MA5) neous rate of change of the clear indications of concavity changes 

function with continuous • Verbalizing an awareness of the in-
changes in the independent stantaneous changes in the rate of 
variable for the entire change for the entire domain of the
domain of the function function (direction of concavities and 

inflection points are correct)
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MA5 and is also able to unpack that mental action to reason in terms of MA1
through MA4. He or she is able to coordinate images of the continuously changing
rate with images of continuous changes in the independent variable and is able to
describe the changing nature of a dynamic event in terms of MA3 and MA4 (Note:
MA3 includes MA1 and MA2). This image of covariation (i.e., L5 reasoning)
supports behaviors that demonstrate that the student understands that the instan-
taneous rate of change resulted from smaller and smaller refinements of the average
rate of change and that an inflection point is where the rate of change changes from
increasing to decreasing, or from decreasing to increasing.

We note that some students have been observed exhibiting behaviors that gave
an appearance of engaging in a specific mental action; however, when their behav-
iors were probed, these students did not provide evidence that they possessed an
understanding that supported the behavior. We refer to such behavior as pseudo-
analytical behavior (i.e., the underlying understanding necessary for performing
the specific behavior meaningfully is not present [Vinner, 1997]), and we describe

Table 2
Levels of the Covariation Framework

Covariational Reasoning Levels
The covariation framework describes five levels of development of images of covaria-
tion. These images of covariation are presented in terms of the mental actions supported
by each image. 

Level 1 (L1). Coordination
At the coordination level, the images of covariation can support the mental action 
of coordinating the change of one variable with changes in the other variable (MA1). 

Level 2 (L2). Direction
At the direction level, the images of covariation can support the mental actions of co-
ordinating the direction of change of one variable with changes in the other variable.
The mental actions identified as MA1 and MA2 are both supported by L2 images. 

Level 3 (L3). Quantitative Coordination
At the quantitative coordination level, the images of covariation can support the 
mental actions of coordinating the amount of change in one variable with changes in 
the other variable. The mental actions identified as MA1, MA2 and MA3 are 
supported by L3 images. 

Level 4 (L4). Average Rate 
At the average rate level, the images of covariation can support the mental actions of 
coordinating the average rate of change of the function with uniform changes in the 
input variable. The average rate of change can be unpacked to coordinate the amount 
of change of the output variable with changes in the input variable. The mental 
actions identified as MA1 through MA4 are supported by L4 images. 

Level 5 (L5). Instantaneous Rate
At the instantaneous rate level, the images of covariation can support the mental 
actions of coordinating the instantaneous rate of change of the function with contin-
uous changes in the input variable. This level includes an awareness that the instan-
taneous rate of change resulted from smaller and smaller refinements of the average 
rate of change. It also includes awareness that the inflection point is where the rate 
of change changes from increasing to decreasing, or decreasing to increasing. The 
mental actions identified as MA1 through MA5 are supported by L5 images.
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the mental action that produced the behavior as a pseudo-analytical mental action.
(Recall that, according to Vinner [1997], pseudo-analytic behavior is produced by
pseudo-analytical thought processes). We also reemphasize that a student is clas-
sified as having a specific covariational reasoning ability level (say, L5) only if she
or he is able to perform the mental action associated with that level (MA5) and all
lower-numbered mental actions (MA1 through MA4). In other words, it is possible
for a student to exhibit MA5 without applying L5 covariational reasoning, and an
example of this will be described later in the article. 

The proposed covariation framework provides an analytical tool with which to
evaluate covariational thinking to a finer degree than has been done in the past.
In addition, it provides a structure and language for classifying covariational
thinking in the context of a student’s response to a specific problem, and for
describing a student’s general covariational reasoning abilities (i.e., develop-
mental level in the framework). 

Covariational Reasoning in a Graphical Context

Students’ covariational reasoning abilities are important for interpreting and
representing graphical function information. Because these activities related to
graphs have been the context in which we initially observed student difficulties, they
have been the focus of much of our work context. A close look at students’ covari-
ational reasoning in the context of a graph reveals that students who exhibit behav-
iors supported by MA1 typically recognize that the value of the y-coordinate
changes with changes in the value of the x-coordinate. Typically, the x-coordinate
plays the role of the independent variable, although we have observed students
treating the y-coordinate as the independent variable. This initial coordination of the
variables is commonly revealed by a student labeling the coordinate axes of the
graph, followed by utterances that demonstrate recognition that as one variable
changes the other variable changes. Attention to the direction of change (in the case
of an increasing function) involves the formation of an image of the y-values getting
higher as the graph moves from left to right (MA2, Table 1). In our experience, the
common behavior displayed by students at this level has been the construction of
a line that rises as one moves to the right on the graph or utterances that suggest an
understanding of the direction of change of the output variable while considering
increases in the input variable (e.g., as more water is added, the height goes up). MA3
involves the coordination of the relative magnitudes of change in the x and y vari-
ables. In this context, students have been observed partitioning the x-axis into inter-
vals of fixed lengths (e.g., x1, x2, x3, x4) while considering the amount of change in
the output for each new interval of the input. This behavior has been commonly
followed by the student’s construction of points on the graph (the student views the
points as representing amounts of change of the output while considering equal
amounts of the input), and this behavior is followed by his or her construction of
lines to connect these points. Activity at the rate level involves recognition that the
amount of change of the output variable with respect to a uniform increment of the
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Imagine this bottle filling with water. Sketch a graph 
of the height as a function of the amount of water 
that’s in the bottle.

input variable expresses the rate of change of the function for an interval of the func-
tion’s domain. This recognition is typically revealed by the student’s sketching of
secant lines on a graph or by carrying out the mental computation or estimation of
the slope of a graph over small intervals of the domain (the sketching of these lines
would result from the student imagining and adjusting slopes for different intervals
of the domain). It is noteworthy that mental actions identified as MA3 and MA4
may both result in the construction of secant lines; however, the type of reasoning
that produces these constructions is different (i.e., MA3 focuses on the amount of
change of the output (height) while considering changes in the input; and MA4
focuses on the rate of change of the output with respect to the input for uniform incre-
ments of the input). Attention to continuously changing instantaneous rate (MA5)
is revealed by the construction of an accurate curve and includes an understanding
of the changing nature of the instantaneous rate of change for the entire domain. It
should be noted that a student may perform MA5 without demonstrating an under-
standing that the instantaneous rate of change resulted from examining smaller and
smaller intervals of the domain. However, the developmental nature of the frame-
work indicates that only students who are able to unpack MA5 (build from MA1 to
MA4) would receive a L5 covariational reasoning classification. This L5 image has
been shown to support an understanding of why a concave-up graph conveys where
the rate of change is increasing and why the inflection point relates to the point on
the graph where the rate of change changes from increasing to decreasing, or from
decreasing to increasing. 

Use of the Framework

This section provides information based on a dynamic situation shown in Figure 1
and called the Bottle Problem, which illustrates common covariational reasoning
behaviors that have been expressed by students when responding to a specific task
(Carlson, 1998; Carlson & Larsen, in press). The mental actions supported by each
image of covariation are followed by a description of specific behaviors that have been
observed in students and their corresponding classifications in using the framework. 

The Coordination Level (L1) supports the mental action of coordinating the height
with changes in the volume (MA1). MA1 has been identified by observing students

Figure 1. The Bottle Problem.
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label the axes and by hearing them express an awareness that as one variable
changes, the other variable changes (e.g., as volume changes, height changes). These
students do not necessarily attend to the direction, amount, or rate of change. 

The Direction Level (L2) supports both MA1 and the mental action of coordi-
nating the direction (increasing) of change of the height while considering changes
in the volume (MA2). MA2 has been identified by observing students construct
an increasing straight line, or by verbalizing that as more water is added, the
height of the water in the bottle increases. 

The Quantitative Coordination Level (L3) supports MA1, MA2, and the mental
action of coordinating the amount of change of the height with the amount of change
of the volume while imagining changes in the volume (MA3). MA3 has been iden-
tified by observing students place marks on the side of the bottle (with each incre-
ment successively smaller until reaching the middle and successively larger from
the middle to the neck). MA3 has also been identified by observing students plot
points on the graph or by hearing remarks that express their awareness of how the
height changes while they consider increases in the amount of water.

The Average Rate Level (L4) supports MA1, MA2, MA3, and the mental action
of coordinating the average rate of change of the height with respect to the volume
for equal amounts of the volume (MA4). MA4 has been identified in students by
observing their construction of contiguous line segments on the graph, with the slope
of each segment adjusted to reflect the (relative) rate for the specified amount of
water; or by hearing remarks that express their awareness of the rate of change of
the height with respect to the volume while they consider equal amounts of water.
(Note that some students have been observed initially constructing line segments
that were not contiguous and that some students have been observed switching the
roles of the independent (volume) and dependent (height) variable several times
in the context of discussing the thinking that they used to construct the graph for
this task.)

Instantaneous Rate Level (L5) supports MA1 through MA4 and the mental
action of coordinating the instantaneous rate of change of the height (with the
respect to volume) with changes in the volume (MA5). MA5 has been identified
in students by observing the construction of a smooth curve that is concave down,
then concave up, then linear; and by hearing remarks that suggest an understanding
that the smooth curve resulted from considering the changing nature of the rate while
imagining the water changing continuously. It is noteworthy that a student would
receive an Instantaneous Rate Level classification only if he or she demonstrated
an understanding that the instantaneous rate resulted from considering smaller and
smaller amounts of water (built on the reasoning exhibited in MA4). The image
that supports L5 reasoning would also support behaviors that demonstrate an
understanding of why an inflection point conveys the exact point where the rate of
change of the height (with respect to volume) changed from decreasing to
increasing, or from increasing to decreasing. 

Some students have been observed exhibiting behaviors that gave the appear-
ance of engaging in MA5 (e.g., construction of a smooth curve). When asked to
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provide a rationale for their construction, however, they indicated that they had
relied on memorized facts to guide their construction. Their behavior was classi-
fied as pseudo-analytical, and the mental action that supported this behavior was
classified as pseudo-analytic MA5 (Vinner, 1997). 

METHOD

Participants

Twenty students who had recently completed 2nd-semester calculus with a course
grade of A were asked to respond to five items that involved an analysis of covariant
aspects of dynamic events (e.g., water filling a spherical shaped bottle, temperature
changing over time, a ladder sliding down a wall). These students represented most
of the A students from five different sections, with a different teacher for each section.
The course materials used in teaching the sections were traditional, and lecture was
the primary mode of instruction. Calculators were not allowed on either homework
or exams. The 20 students received payment for their time spent in completing the
five-item quantitative assessment. Six of these students were subsequently invited
to participate in 90-minute clinical interview for which they were also paid. The
selection of the interview subjects was based on assembling a collection of indi-
viduals who had provided diverse responses on the written instrument. 

Procedures

The five-item instrument was completed by each of the 20 subjects within a week
of completing the final exam. It was administered in a monitored setting with no
time restriction, and the students were asked to provide their answers in writing.
Written items were then scored using carefully developed and tested rubrics
(Carlson, 1998), and the percentage of the students who provided each response
type for each item was determined. 

The six interviews were conducted within 2 days of the students’ completion of
the five-item written instrument. Although the interviews were primarily unstruc-
tured, with the interviewer spontaneously reacting to the student’s description of
her or his solution, prepared interview questions imposed some structure. During
the interview, the researcher initially read each question aloud and made general
reference to the student’s written response. The student was then given a few
minutes to review her or his written response and was subsequently prompted to
describe and justify the solution verbally. After the student summarized the written
response, the researcher made general inquiries, using prompts such as “explain”
or “clarify,” and continued to ask more specific questions until the student
responded or appeared to have communicated all relevant knowledge. This process
was repeated for each item. 

Analysis of the interview results involved an initial reading of each interview
transcript to determine the general nature of the response. This first reading was
followed by numerous careful readings by two of the authors to classify the behav-
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iors and responses of each student on each item, using the mental actions described
in the covariation framework. After labeling the mental actions (e.g., MA1, MA2,
MA3) associated with the various behaviors exhibited for a single item, both
authors reviewed the entire response for that item to determine the covariational
reasoning level (e.g., L3) that supported the identified mental actions that the
response displayed. Inconsistencies in the coding by the two authors were resolved
by discussion, with the final labeling representing agreement between the two
coders. Illustrations of select quantitative data and coded interview excerpts are
followed by a discussion of the students’ responses to three of the five covariational
reasoning tasks. 

RESULTS

The Bottle Problem

The bottle problem (see Figure 1) prompted students to construct a graph of a
dynamic situation with a continuously changing rate and with an instance of the
rate changing from decreasing to increasing (i.e., an inflection point). Table 3 shows
the kinds of responses that the 20 students provided on the written assessment. Only
5 (25%) of these high-performing 2nd-semester calculus students provided an
acceptable solution, while 14 of the 20 students (70%) constructed an increasing
graph that was strictly concave up or concave down.

When prompted during the follow-up interview to describe the graph’s shape,
the six interview subjects provided varied responses. These responses are described
more fully in the next section, but we summarize some important points here. Only
two of the interview subjects—Student A and Student C—provided a response that
suggested an image of a continuously changing instantaneous rate (MA5) for this
situation. When prompted to explain the rationale for her acceptable graph, Student
A initially stated, “If you look at it as putting the same amount of water in each
time and look at how much the height would change, the height would be changing
more quickly, and in the middle if you add the same amount of water, the height
would not change as much as it would at the bottom.” (MA3). When prompted to
explain why she had constructed a smooth curve, Student A responded, “I imag-

Table 3
Bottle Problem Quantitative Results

Response types Number of students out of 20
providing each response type

Constructed a line segment with positive slope 1
Constructed an increasing concave-up graph 11
Constructed an increasing concave-down graph 3
Acceptable graph, except for slope of segment 3
All aspects of graph were acceptable 2
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ined the height changing as the water was pouring in at a steady rate” (MA3). She
also characterized the inflection point as the point “where the rate at which it was
filling goes from decreasing to increasing” (suggestive of MA5).

By contrast, Student C, who also constructed an acceptable graph by sketching
a smooth curve over her previously constructed contiguous line segments, justi-
fied the construction by saying, “I just know that it must be smooth because this
is what these graphs always look like, not these connected line segments.” Even
though her initial construction of a smooth curve was suggestive of MA5 and
appeared to depict an image of continuously changing rate, further probing revealed
that this student’s answer expressed only an opinion of how the graph should look,
rather than an emergent representation of how the variables changed. This response
was therefore classified as pseudo-analytic MA5. 

In analyzing the thinking of the three students who provided either a concave-
up or concave-down construction, we noted that two of these students (Students
B and E) at times during the interview constructed images of the height changing
at a varying rate (e.g., “As you go up a little more height increases and the volume
increases quite a bit” [MA3]). However, inconsistencies in their reasoning appeared
to result in their constructing an incorrect graph. Student B justified his concave-
down construction by saying, “Every time you have to put more and more volume
in to get a greater height towards the middle of the bottle” (MA3). (Notice that this
illustrates a situation where the student switched the roles of the independent and
dependent variables—that is, he considered the amount of change of the volume
while considering uniform changes in the height). He subsequently failed to
continue thinking about the relative changes in the volume and height for the top
half of the bottle. Student F justified his concave-up construction by saying, “As
I add more water, it still gets higher and higher” (suggestive of MA2). Although
both of these students appeared to possess initial images of height changing as more
water was added, at some point during the interview they appeared to focus on incor-
rect information or had difficulty representing their correct reasoning patterns
using a graph. The remaining interview subject, Student D, provided an increasing
straight line and stated with confidence, “As the volume comes up, the height would
go up at a steady rate … it would be a straight line” (MA2). He appeared to notice
only that the height increased while considering increases in the volume (MA2). 

Both the quantitative and qualitative data for the Bottle Problem support the
finding that very few of these high-performing 2nd-semester calculus students were
able to form accurate images of the continuously changing instantaneous rate
(MA5) for this dynamic function event. The excerpts from the student interviews
that follow illustrate this finding.

Student A constructed an acceptable graph, which appears in Figure 2. During
the course of the interview, she initially focused on the amount of change of the
height while considering fixed increases in the volume (MA3). These comments
were followed by discussions of the slope and rate changes for fixed amounts of
water (MA4). When prompted for more explanation, she eventually moved to
comments that conveyed that she was attending to the continuously changing rate
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while imagining the bottle filling with water (MA5). She appeared to understand
the information conveyed by the inflection point and appeared to have a mature
image of changing rate over the domain of the function. The behaviors exhibited
by this student when responding to this task suggested an Instantaneous Rate (L5)
covariational reasoning ability. 

Figure 2. Student A’s written response.

Int.: Describe how you sketched the graph. [Note: Final graph is acceptable.]
A: I knew it changed different for the bottom part because it’s circular and the top part

has straight walls. If you look at it as putting the same amount of water in each time
and look at how much the height would change, that’s basically what I was trying to
do. So for the first part, the height would be changing more quickly, and in the middle
if you add the same amount of water, the height would not change as much as it would
at the bottom [MA3]. It’s symmetric.

Int.: How does that affect the graph?
A: Higher slope in the beginning, then it levels out, then a higher slope again [MA4].

Then for the neck part it’s basically a straight line because you’re filling the same
area with each amount [MA3].

Int.: Can you tell what happened at this point [pointing to the inflection point]? 
A: That is where the point of symmetry is. I guess it would also be where the second

derivative is equal to 0, which is where the rate at which it was filling goes from
decreasing to increasing [MA5]. 

Int.: Why did you draw a smooth curve through the lines? 
A: Well, I imagined the slope changing as the water was pouring in at a steady rate

[MA5]. 
Int.: Do you have anything else to add? What is the slope of the straight line?
A: About like the curve right here [pointing to the junction of the curve and line].

Student B constructed a concave-down graph for the entire domain of the func-
tion. During the interview, he initially focused on the direction of the change of
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the height, as revealed by his comment, “the more water, the higher the height”
(MA2). Further prompting revealed that he was conceptually able to coordinate
changes in the height with changes in the amount of water (i.e., “As you go up, a
little more height increases and the volume increases quite a bit” [MA3]). The state-
ment, “You have to put more and more volume in to get a greater height toward
the middle” is also indicative of MA3. His expressed behaviors were suggestive
of a Quantitative Coordination (L3) covariational reasoning ability for this task.
His concave-down construction appeared to result from his failure to continue coor-
dinating changes in height with changes in the amount of water. 

Int.: Explain your solution [Note: Student has provided a concave-down graph for the
entire domain.]

B: This is my least favorite problem. I tried to solve for height in terms of volume and
it was a mess.

Int.: Can you analyze the situation without explicitly solving for h?
B: OK, the more water, the higher the height would be [MA2]. In terms of height of the

water, that is what we are talking about. If you are talking about the height left over,
that is basically decreasing. Right here the height will be zero and the volume is zero.
As you go up, a little more height increases and the volume increases quite a bit
[MA3], so the amount by which the height goes up is not as fast [MA3]. Once you
get there [pointing to halfway up the spherical part of the bottle], the height increases
even slower [MA3]. I guess from here to there height increases the same as the volume
increases, and once you get here it increases slower [MA3]. No, I am wrong. So, every
time you have to put more and more volume in to get a greater height towards the
middle of the bottle and once you get here, it would be linear, probably [pointing to
the top of the spherical portion]. So, it’s always going up [tracing his finger along
the concave-down graph], then it would be a line.

Int.: So, what does the graph look like?
B: Like this [pointing to the concave-down graph he has constructed], but it has a straight

line at the end.

Student C produced a graph with only minor errors. Her initial justification that
“it is going to be filling rapidly, so you are going to have greater slope” focused on
the relative slope for a section of the graph. She immediately followed this state-
ment by the further justification, “As you increase the volume you are going to get
less height” (MA3), and her final justification was a statement of rules learned in
calculus. Her responses suggested that although she was able to associate a greater
slope with the bottle’s filling rapidly and appeared at times to be imagining contin-
uously changing instantaneous rate (MA5), she did not seem to understand how the
instantaneous rates were obtained (i.e., she was not able to unpack MA5). Not even
in response to direct probing could she explain what the inflection point conveyed.
As a result, she was not classified as having L5 covariational reasoning ability. When
responding about this task, Student C appeared to use L3 reasoning predominantly,
along with rules learned and memorized in calculus. This combination of abilities
appeared to be adequate for the construction of an acceptable graph.

Int.: Explain how you obtained your graph. [Note: Final graph is acceptable.]
C: I knew it was filling at a cubic rate somehow, so it would have something like a cubic

equation. When you take the inverse of that equation it whips it like that. But I was
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also able to see here that when you start out, it’s going to be filling rapidly, so you
are going to have a greater slope [MA5—the student appears to know that “rapidly”
and “more steep” are connected but does not demonstrate an understanding of how
the instantaneous rate was obtained. Shows some confusion and continues:] But as
you increase the volume, you’re going to get less of a height change until you get up
to here [MA3]. As you get past the halfway point, it’s going to go from concave down
to concave up and you’re going to have an inflection point. For this cylinder part, I
know it’s going to be linear, since for the cylinder it’s related by volume, which equals
area times height. And so we have area as a constant. So what we have is a linear equa-
tion for height as it’s related to volume.

Int.: Can you tell me why you drew the smooth curve through the line segments that you
had constructed? 

C: Well [a long pause] … I just know that it must be smooth because this is what these
graphs always look like, not these connected line segments [pseudo-analytic MA5]. 

Int.: Can you tell me why it changed concavity there [pointing to the inflection point]?
C: Because if you take the second derivative of this volume in terms of height, you’ll

get a 0. On this side you have a negative acceleration. But once you reach the
halfway point, then you start becoming a positive second derivative. 

Student D constructed an increasing straight line for his solution. During the inter-
view, he appeared to coordinate only the direction of the change in the height while
considering changes in the volume (MA2). The behaviors exhibited by this student
when responding to this task were suggestive of a Direction (L2) covariational
reasoning ability. 

Int.: Can you explain your solution? [Note: Student’s solution is an increasing straight
line.]

D: I tried to solve for h. But I think I need to define it as a piecewise defined function.
Maybe then I can figure it out. 

Int.: Did you try to get an idea of the general shape of the graph by imagining the bottle
filling with water?

D: As the volume comes up, the height would go up at a steady rate [MA1, MA2].
Int.: How would you represent this graphically?
D: It would be a straight line [passes his hand over the increasing straight line].
Int.: So, the entire graph is a straight line.
D: Yes.

Student E provided a concave-up graph for his written solution. When probed
to explain his answer, he replied that “as you added more water, the height was
going up” (MA2). He then proceeded to explain his concave-up graph with the
following statement, “The amount by which the height goes up is increasing”
(MA3). However, his factual information was flawed (the amount of the height
change was decreasing). Because he did not consistently exhibit behaviors
supported by MA3, he was classified as having a Direction (L2) covariational
reasoning ability. 

Int.: Can you describe how you determined your graph? [Note: Student has provided a
concave-up graph.]

E: Well, I knew that as you added more water the height was going to go up [MA2] …
um.… Then I knew that it would curve up because your graph is getting higher all
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the time since the height is always increasing [MA3]. So it is concave up [points to
the concave-up graph]. 

Int.: What is increasing? 
E: The amount by which the height goes up is increasing [MA3]. This means that it will

curve up like this. 
Int.: How do you explain what the shape looks like here [pointing to the middle of the

bottle]? 
E: It is still true here that as you add more water, it will increase in height, so it curves

up here too [MA2].

Student F also constructed a concave-up graph and appeared to focus consistently
on the amount of change of the height while considering changes in the volume
(MA3), as revealed by his justification, “As I add more water it still gets higher
and higher.” At one point during the interview, he indicated that “height is going
up more and more” [MA3]. However, he did not persist long enough to resolve the
incorrectness of this statement (when imaging water being added to the lower half
of the bottle); nor did he follow through in resolving the inconsistency that he
noticed later in the interview (see the following excerpt). He did not show a consis-
tent pattern of behaviors supported by MA3. Consequently, the behaviors exhib-
ited by this student when responding to this task were suggestive of Direction (L2)
covariational reasoning ability.

Int.: Can you explain how you determined your graph [Note: Student has provided a
concave-up graph.]

F: When you’re given a flask like this, the way I thought of it was, you have to start the
coordinates at (0, 0) with volume equal to 0, and the height equal to 0. When you start
filling something that has such a wide base like this, the height is going to increase
as fast as the volume [MA1, MA2]. Then as more water is added it gets higher and
higher, so the graph goes up more and more [MA3; pointing to the concave-up graph]. 

Int.: What happens at the middle of the spherical portion? 
F: Now, I am confused. Will it continue to go up higher and higher? [Pauses.] Well yes,

as I look at the part above the middle, as I add more water it still gets higher and higher
so yes, it curves up like this [MA3; again pointing to the concave-up graph]. 

The Temperature Problem

The task shown in Figure 3 presented students with a rate-of-change graph and
then called on them to construct the corresponding temperature graph. This problem
required students to directly interpret rate information displayed in the form of a
graph and to use the information to graph the original function based on tempera-
ture. As shown in Table 4, four (20%) of the high-performing 2nd-semester calculus
students constructed an acceptable temperature graph, given the rate of change of
temperature for an 8-hour period; five (25%) of the students produced the same graph
for the temperature graph as the one given for the rate-of-change graph. We also
found that six (30%) failed to note the concavity changes when constructing their
graphs. The six students who omitted the concavity changes provided a concave-
down graph from t = 0 to t = 6, with a maximum value at t = 2.
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Given the graph of the rate of change of the temperature over an 8-hour time
period, construct a rough sketch of the graph of the temperature over the 8-hour
time period. Assume the temperature at time t = 0 is 0 degrees Celsius.

Figure 3. The Temperature Problem.

Table 4
Temperature Problem Quantitative Results

Response type Number of students out of 20
providing each response type

Constructed a strictly concave-up graph for the 
entire domain 1

Constructed the same graph as the temperature graph 5
Omitted the concavity changes at t = 2 and t = 5 6
Reversed the concavity 4
All aspects of graph were acceptable 4

The follow-up interviews revealed that, of those four students who provided an
acceptable response, like Student C’s response shown in Figure 4, there was little
evidence that they were interpreting the rate information conveyed by the graph.
When Student C was prompted to justify her acceptable response, she replied,
“Positive first derivative implies function increasing, negative first derivative
implies function decreasing,” and “Second derivative equal to zero occurs at
inflection points.” When asked to explain the reasoning that led to these statements,
she indicated that this was how she had learned the information in class, and she
didn’t know how to think about it any other way (pseudo-analytic MA5). It is inter-
esting to note that even when her responses were directly probed, she also appeared
unable to construct an image of the temperature changing while imagining changes
in time (MA3). Her response suggested that a memorized set of rules guided her
construction. However, this is not surprising if one considers the nature of a tradi-
tional calculus course.
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Moreover, the collection of follow-up interviews revealed that most of these
students did not construct an accurate image of the rate changing (MA4) as they
considered increases in the domain. The two students who constructed an
increasing temperature graph (from t = 0 to t = 4) did not appear to understand
what was being conveyed when the rate began to decrease at t = 2. When prompted
to explain, both students indicated that because the rate graph was positive from
t = 0 to t = 4, the temperate graph must be increasing. When specifically asked to
explain the behavior of the temperature graph at t = 2, one of these two students
commented that “y at 2 it is also positive, so it will keep curving up until it is 4.”
Even though these students appeared to have an initial image of the temperature
function increasing at an increasing rate (MA5), their inability to note and repre-
sent the rate changing from increasing to decreasing (i.e., the inflection point), as
shown by their concave-up construction and remarks, suggested weaknesses in
their understandings.

Another student who had constructed the same graph for the temperature graph
as the given rate-of-change graph, said, “This is hard to think about…. It is hard
for me not to just draw the shape that I see … it really throws me off.” This student
appeared to make no attempt to interpret the rate-of-change information displayed
by the graph. Rather, he appeared to want to reconstruct the same graph that he was
observing.

The Ladder Problem

The ladder problem shown in Figure 5 is a modification of a problem reported
in Monk (1992), which prompted students to select a means of representing a
dynamic situation (i.e., a ladder moving down a wall). The results of student
responses to this task appear in Table 5. When prompted to describe the speed of
the top of a ladder as the bottom of the ladder is pulled away from a wall, eight
(40%) of these 2nd-semester calculus students provided an accurate justification

Figure 4. Student C’s response to the Temperature Problem.
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for the claim that the top of the ladder would speed up as the bottom of the ladder
is pulled away from the wall. Five additional students (25%) also indicated that the
top of the ladder would speed up, but provided no justification to support the claim.
In addition, five students conveyed the idea that the speed of the top of the ladder
would be constant, and two students (10%) indicated it would slow down. 

From a vertical position against a wall, a ladder is pulled away at the bottom
at a constant rate. Describe the speed of the top of the ladder as it slides down
the wall. Justify your claim. 

Figure 5. The Ladder Problem.

Table 5
Ladder Problem Quantitative Results

Response type Number of students out of 20
providing each response type

Speeds up—valid written justification 8
Speeds up—no justification 5
Stays the same 5
Slows down 2

The justifications provided on the written instrument revealed that the eight
students who had provided a correct response with a valid justification had imag-
ined a physical enactment of the ladder falling down the wall. This observation was
based on a succession of pictures of the ladder in different positions drawn by the
students and/or their written explanations. The follow-up interviews with two of
these students supported this observation. 

When one of these students (Student B) was prompted to explain his correct
response, he performed a physical enactment of the situation, using a pencil and
book on a table. As he successively pulled the bottom of the pencil away from the
book by uniform amounts, he explained, “As I pull the bottom out, the amount by
which the top drops gets bigger as it gets closer to the table” (MA3). His comments
suggested that he was observing the varying amounts by which the top of the pencil
dropped toward the table as the bottom was pulled out by uniform amounts. His
explanation appeared to involve the coordination of an image of the magnitude of
the change in the dependent variable with uniform changes in the independent vari-
able (MA3). Student A provided a similar response, except that her enactment
involved using her hand and a book to model the situation. She began by pressing
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her flat hand against the book and successively moved the bottom of her hand away
while watching the amount by which the top of her hand dropped down. Both
students appeared to assume that the greater fall implied speeding up; however,
specific prompts were not offered to verify this assumption, nor were specific
prompts used to elicit the reasoning behind this deduction. 

Two of the interview subjects provided no justification on the written instrument
to explain their correct responses. However, when prompted during the interview
to explain their reasoning, Student E did provide a valid justification that also used
a self-constructed enactment of the situation. Student D indicated that he had “just
guessed.” It is not clear whether he constructed an image of the situation as a basis
for his guess. 

The remaining two interview subjects indicated that the speed of the top of the
ladder would remain constant as the bottom was pulled away from the wall. These
students both drew pictures of the ladder in different positions, but modified the
length of the ladder so that the amounts of the drop remained the same for each
new position of the ladder. When asked to explain their reasoning, both students
provided responses that indicated they had attempted to enact the situation, but their
model was flawed. Student C drew a picture of the successive positions of the ladder
as the bottom was pulled out by equal amounts. The drawing also illustrated equal
drops of the top of the ladder, a configuration that the student achieved by violating
a condition of the problem and adjusting the length of the ladder. Even though her
answer was incorrect, she appeared to engage in a behavior that suggested that she
was attempting to coordinate the amount of change in the dependent variable with
the change in the independent variable (MA3). 

The use of physical enactment appeared to provide a powerful representational
tool that assisted these students in reasoning about the change in one variable while
concurrently attending to the change in the other variable. Further exploration of
this observation is needed. 

CONCLUSIONS

The students in this study varied in their ability to apply covariational reasoning
when analyzing dynamic events. Observed trends suggest that this collection of
calculus students had difficulty constructing images of a continuously changing rate,
with particular difficulties in representing and interpreting images of increasing rate
and decreasing rate for a physical situation (MA5). Despite these difficulties, most
of the students were able to determine the general direction of the change in the
dependent variable with respect to the independent variable (L2) and were
frequently able to coordinate images of the amount of change of the output vari-
able while considering changes in the input variable (MA3). However, we observed
weaknesses in their ability to interpret and represent rate-of-change information
(MA4; see Tables 3 and 4). Aided by the use of kinesthetic enactment, however,
these students were more often able to observe patterns in the changing magnitude
of the output variable (MA3), as well as patterns in the changing nature of the instan-
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taneous rate (MA5). Nonetheless, their difficulty in viewing an instantaneous rate
by imagining smaller and smaller refinements of the average rate of change
appeared to persist. More importantly, this limitation (an inability to unpack MA5)
appeared to create difficulties for them in accurately interpreting and understanding
the meaning of an inflection point and in explaining why a curve was smooth. Even
direct probing of the few students that were able to engage in MA5 revealed that
they were not able to explain how the instantaneous rate was obtained. This weak-
ness appeared to result in difficulties for them in bringing meaning to their construc-
tions and graphical interpretations. 

Despite the fact that the subjects of our study were high-performing 2nd-semester
calculus students who had successfully completed a course emphasizing rate and
changing rate, the majority did not exhibit behaviors suggestive of MA5 while
analyzing and representing dynamic function events. They appeared to have diffi-
culty characterizing the nature of change while imagining the independent variable
changing continuously. In summary, the majority of these calculus students—

• were able to apply L3 reasoning consistently. They exhibited behaviors that
suggested they were able to coordinate changes in the direction and amount of
change of the dependent variable in tandem with an imagined change of the inde-
pendent variable (MA1, MA2 and MA3);

• were unable to apply L4 reasoning consistently. They exhibited behaviors that
suggested they were unable to consistently coordinate changes in the average rate
of change with fixed changes in the independent variable for a function’s domain
(MA1 to MA4);

• had difficulty applying L5 reasoning. They were not consistently able to exhibit
behaviors that suggested that they were able to coordinate the instantaneous rate
of change with continuous changes in the independent variable (MA5);

• had difficulty explaining why a curve is smooth and what is conveyed by an
inflection point on a graph (i.e., applying L5 covariational reasoning). 

Our results support the work of Confrey and Smith (1995) and Thompson
(1994a), who revealed similar findings regarding the complexity of reasoning
about covarying relationships; however, our study extends what has previously been
reported by identifying specific aspects of covariational reasoning that appear to
be problematic for college-level students. It is also our hope that the study’s results
and the covariation framework will serve to explicate the cognitive actions involved
in students’ reasoning in interpreting and representing dynamic function events.

DISCUSSION

Research has revealed that the basic idea of covariation is accessible to elemen-
tary and middle school children (Confrey & Smith, 1994; Thompson, 1994c). It
seems reasonable to think, then, that this same idea would also be accessible to high-
performing 2nd-semester calculus students. Therefore, the results of this study raise
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concerns, especially when we consider that the selected tasks could be completed
successfully by students with no knowledge of calculus but with a strong covari-
ational reasoning ability (Carlson & Larsen, in press). Since the information
assessed in this study was intended to be foundational for building and connecting
the major ideas of calculus, we believe these findings suggest a need to monitor
the development of students’ understandings of function and their covariational
reasoning abilities prior to and during their study of calculus. As this study and
others have revealed, even high-performing students can emerge from 2nd-semester
calculus with superficial understandings of ideas that are foundational for future
study of mathematics and science. Our failure to monitor these understandings and
reasoning abilities portends negative consequences for students. 

The thinking revealed in this study should prove useful for informing the design
and development of curricular materials aimed at promoting students’ covariational
reasoning abilities. The results also underscore the need for students to have oppor-
tunities to think about the covariational nature of functions in real-life dynamic
events. We recommend that students be given lines of inquiry that compel probing
reflections on their own understandings of patterns of change (involving changing
rates of change). Accordingly, we believe that curricula at the high school and
university levels should take into consideration the complexity of acquiring L5
(Instantaneous Rate) reasoning and should provide curricular experiences that sustain
and promote this reasoning ability, especially when one considers its importance for
understanding major concepts of calculus (e.g., limit, derivative, accumulation) and
for representing and understanding models of dynamic function events. 

The theoretical model and results from this study should also be useful for
classroom teachers in both identifying and promoting the development of their
students’ covariational reasoning abilities. Curricular activities that support the
covariational approach to instruction are under development by the authors and have
been administered to both preservice secondary teachers in a methods course and
1st-semester calculus students at a large public university in the southwestern United
States. The development of these curricular activities was guided by the covaria-
tion framework and the insights gained from this study. Preliminary observations
of students working with this curriculum have revealed positive shifts in their
covariational reasoning abilities. Although the curriculum will benefit from multiple
refinements as students’ responses continue to suggest ideas for improvements,
these observations are encouraging. 

The new century offers educators a plethora of technologies, including graphing
calculators, geometry software, computer algebra systems, electronic laboratory
probes, specialty software such as MathCars (Kaput, 1994), and specially designed
physical devices (e.g., Monk & Nemirovsky, 1994) for studying real-time dynamic
events. Rich pedagogical opportunities abound for building on students’ intuition
about and experience with dynamically changing quantities. Properly grounded and
coupled with sufficient teacher training, these technologies offer valuable tools for
students in learning to apply covariational reasoning to analyze and interpret
dynamic function situations.
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FUTURE RESEARCH

The work from this investigation has resulted in our reflecting on the nature of
the reasoning patterns involved in applying covariational reasoning. We claim that
conceptually coordinating the change in one variable with changes in the other vari-
able while attending to how the variables change in relation to each other involves
a mental enactment of the operation of coordinating on two objects (these objects
are different depending on the mental action in the framework). This observation
led us to hypothesize that the mental actions involved in applying covariational
reasoning are characteristic of transformational reasoning as described by Simon
(1996): 

Transformational reasoning is the mental enactment of an operation or set of opera-
tions on an object or set of objects that allows one to envision the transformations that
these objects undergo and the set of results of these operations. Central to transfor-
mational reasoning is the ability to consider, not a static state, but a dynamic process
by which a new state or continuum of states are generated. (p. 201)

We view the mental actions that we have described in the Covariation Framework
as examples of transformation reproductive images (i.e., the problem solver is able
to visualize the transformation resulting from an operator). In our case, the student
visualizes the transformation of a dynamic situation as resulting from the opera-
tion of coordinating. When engaging in MA3, the student is able to visualize the
transformation of a dynamic situation (e.g., a ladder falling down the wall, a bottle
filling with water) by performing a mental enactment of coordinating two objects
(the amount of change in one variable with an amount of change in another vari-
able); while MA5 involves a mental enactment of coordinating the instantaneous
rate of change in one variable with changes in the other variable. In both cases, the
mental enactment on the objects results in a transformation of the system (e.g., the
ladder is envisioned as being in a different position, the bottle is envisioned as
containing more water). 

Although we claim that we have observed instances of transformational
reasoning, we offer no information about the process of coming to generate a partic-
ular transformational approach. We concur with Simon (1996) in calling for explo-
rations of this question, as our results also support the notion that appropriate appli-
cation of transformational reasoning may prove to be extremely powerful for
understanding and validating a mathematical system. 

Our investigation also calls for an extension of the Covariation Framework to
include a greater level of epistemological refinement for understanding covarying
quantities. Such a framework may include aspects of concept development as it
relates to covariational reasoning abilities. It may also include a more finely
grained analysis of L5 (Instantaneous Rate) reasoning. In addition, it could be
extended to articulate the nature of covariational reasoning more clearly in the
context of working with formulas or the algebraic form of a function. 

Our research invites future study of some specific questions on the centrality of
continuity and the implicit time variable in covariational reasoning. Our discus-
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sion and instruments deal with physical relationships that are inherently continuous.
It is unclear to what extent the framework applies to students’ study of discontin-
uous dynamic function events. Furthermore, our experience suggests that students
have a powerful tendency to think of time as a variable, even to the point of intro-
ducing it into situations like that in the Bottle Problem, where it is not strictly neces-
sary (or requested). Future research may clarify the role of the implicit time vari-
able in the development of student’s covariational reasoning.

Another promising area of research includes investigations of the effectiveness
of various curricular interventions in developing students’ ability to apply covari-
ational reasoning when solving problems that involve real-world dynamic situa-
tions. Such studies may also provide information about the effect of taking a
covariational approach to learning functions on students’ development of their
understanding of the function concept in general. 

We have provided examples of students who appeared to be able to apply covari-
ational reasoning to the bottle problem and the ladder problem in a kinesthetic
context but who were unable to use the same reasoning patterns when attempting
to construct a graph (i.e., to reason in the graphing representational context) for these
situations. These examples are important because they suggest that the covariation
framework may be used to infer information not just about the developmental level
of student images of covariation but also about the internal structure of these
images. If we imagine that a student’s overall image of covariation of a dynamic
situation contains specific images related to each relevant representation system,
we may be able to use the framework to analyze the way in which these images
are connected and coordinated. 
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